
UCID-30150
COMPUTER
DOCUMENTATION

Lawrence Livermore Laboratory

;:’SOLUTION OF BLOCK-TR!DIAGONAL SYSTEMS

OF LINEAR ALGEBRAIC EQUATIONS

A. C. Hindmarsh

February 1977

Prepared for U.S. Energy Research &
Development Administration under

p
contract No. W-7405-Eng-48.

I

.d-

+

f’

CONTENTS

ABSTRACT l

INTRODUCTION 2

PART I: -Full Storage Version (BT) 5

Availability - 5

Usage 5

Example ’ 7

Method 9

PART II: Minimal Storage Version (BTMS) 12

Avail.ability 12

Usage ~ 12

Example 14

Method 16

TESTING 17

REFERENCES 18

APPENDIX I"

APPENDIX II:

Listing of ~ECBT / SOLBT - 19

Listing of BT.MS . . 23

-i-

SOLUTION OF BLOCK-TRIDIAGONAL SYSTEMS
OF LINEAR ALGEBRAIC EQUATIONS

A.C. Hindmarsh

December, 1976

A B S T RA C T

The solution of linear systems with a block-

tridiagonal structure is a very common requirement in many

applications. This report describes two Fortran packages

for solving such systems. The first is for the case when

all the relevant blocks in the coefficient matrix can be

stored at once. The second is for the case when they cannot,

and instead the equations are generated, one block-row at

a time, by a user-supplied subroutine. The blocks are

assumed to be full, and partial pivoting is done within

block-rows only.

-2=

I-N T I~ 0 D U C:T I O N

This report, and the routines given here, are concerned with the Solution

of systems of linear algebraic equations~

T x : y.., " " (I)

in which the coefficient matrix~Tis square and block-tridiagonal.

mean that T has the block structure

By this we

m ~=.

Ai B1

C2 A2

C1

©

C
3 ; "

N-I.- : .N-I BN-IG . "
" .

_ . BN CN AN

(2)"

In terms of the indi.vidua.l;;b’locks of equations",- (!):and (2); can be written

A1 Xl I+BI x2’-+’ Cll x3 = Yl

Ck.Xk-I t;~Ak. Xk!+.., Bk Xk+l = Yk

BN XN-2 +CN XN-] # AN XN = YN

(2< k<N-l) (3)

Here xi and Yk denote vectors of length M..~n thei th block position of x and

y, respectively. This system isa slight generalization of the usual meaning of

a block-tridiagonal system, in that blocks are allowedin the (1,3) and (N,N-2)

block positions, namely C1 and BN, respectively. It is assumed that N > 4,

since otherwise there is no structure asst~med for the matrix T which can be

utilized to any advantage.- - :.,..

-3-

Systems of this form are found frequently in various applications, chiefly

in the numerical solution of systems of partial differential equations. The

presence of C1 and BN is due to certain types of boundary conditions for such

problems. The particular application which motivated this work was to the

systems that arise in ADI (alternating direction implicit) methods for two-

dimensional problems, as exemplified by [I].

All of the blocks Ai, Bi, Ci in (2) are treated here as full M x M matrices.

If N is the number of blocks in each direction in this structure, then the order

of the matrix T is MN, and the total number of nonzero elements allowed in T

is 3M2N.

The two packages presented here both solve the System (I) by performing

appropriate decomposition of the matrix T and performing back-substitutions to

solve for x. The decomposition is structured block’LU decomposition, described

in detail below, in the Subsection called Method in Part I. The algorithm in-

volves the solution of many M x M linear systems, and for this the dense linear

system routines DEC and SOL, given in [2], are used.

The need for two distinct packages arises from the storage and efficiency

considerations associated with various contexts in which block-tridiagonal sys-

tems are solved. In the first package, called BT, it is assumed that the problem

input, T and y, can all be stored in core at once, involving 3M2N + MN elements.

The LU factorization is then saved, and this allows the solutions of (I) and any

subsequent systems, with the same matrix T but different ~ectors y, to be accom-

plished very cheaply. However, for contexts in which that much storage is not

available, there is a minimal storage version of the package, called BTMS. It

requires only M2N + MN + 3M2 words of storage, and calls for the blocks of

elements as they are needed. It is just as efficient as the first package for

the solution of a single system, but it offers no cost savings at all for sub-

sequent systems.

-4-

Both of.the-packages,.gi~en~here are wr.ittenli.n ANSI Standard¯Fortran, in

order to allow forTmaximum portability. They use singielcprecision exclusively.

The auxiliary routines DEC~and SOL, however, are.,cavailab,le in a vectorized

version, an assemblyilanguage (Compass.)version, and a version for the CDC-

STAR, as well.as a standard Fortran version, one,the CDC-7600, considerable im-

provements in efficiency are possible by substituting the faster versions of

DEC/SOL in the packages given here.. ~

-5-

PART I.

FULL STORAGE VERSION (BT)

Availability

The package referred to here as BT consists of the two subroutines

DECBT and SOLBT, which are listed in Appendix I for reference, and the

auxiliary routines DEC-and SOL [2]. At LLL, the Fortran source code for the

BT package is available from the NMG Mathematical Software Library [3], by way

of the accesS routine MSLAR, using the teletype command

NMG MSLAR READ DECBT END (return)

See [2] for instructions on obtaining the non-standard versions of DEC/SOL,

if desired. The routines contain OPTIMIZE cards, which must be removed for use

Under systems other than CHAT or ORDER.

A demonstration program is also available. It solves an example problem,

as described below. The source code for this .program, together with the BT

package, is obtainable with the command

NMG MSLAR READ DEMO DECBT END (return)

usage

The BT package is used by making calls to DECBT and SOLBT. Subroutine

DECBT is to be called once only for a given matrix T, and performs an appropriate

decomposition of T without reference to the vectors x or y. Subroutine SOLBT

is to be called once for each right-hand side vector y in the system Tx = y,

where DECBT has been previously called for T. The calling sequences for the

two routines are as follows:

-6-

CALL DECBT-(M, N, I;A, B:I,. C, IP,~IER)

[Test IER]

CALL SOLBT (M, N, A, B,.C, Y,"I~)

The definitions of the arguments are as follows:

M

N

= the order Csize).of each block in T.

=the number of blocks, in each direction¯along the matrix T, with

C

IP

N > 4..The total..order of T is M*N.

= an M x M xN array containing the diagonal: blocks Al., ..., AN, i-n the

notation of (2),~ on input to DECBT A(I,J,K) must be set to the (I,J)

element of AK. The first and second dimension of ~the A array are assumed

to be exactly M, sO that the elements are stored in packed form, in the

usual (columnw.ise) Order.

= an M × M x N ~a~rray containingthe blocks Bl-, , BN, on input to DECBT,

stored in ~t.he same manner as in A.

= an M x-M xN.arraycontaining the bTocks Cl, .~., CN,-on input to DECBT,

stored in the.samemanner as in A. :.
r..

= an intege r array of .length M*N for working storage (used for pivot in-

forma ti on).

IER = an output error indicator from DECBT.

IER = 0 .if no.errors.,oCcurred;

= -I if the input value of M or.N was.illegal; and

= K if a singular diagonal block.was found, in the Kth stage of the

decomposition.

SOLBT should not be called if IER ¢ O.

Y = the right-hand side vector y, of length M*N,:on input to SOLBT, and the

solution vector x on output.

-7-

The arrays A, B, C, and IP, on output from DECBT, contain the block-LU

decomposition of T, and so must not be disturbed between a call to DECBT and

any subsequent calls to SOLBT for:a given matrix T. For the same.reason, if

the user wishes to save thematrix T, the arraysA, B, and C must be copied to

separate locations before the call to DECBT.

The SOLBT routine must not be called if IER ~ 0 on return from DECBT, as

this will produce nonsense. If IER = O, as many calls to SOL BT can be made as

there are distinct vectors y for the same matrix T.

Example

To illustrate the use of the BT package, we consider a small example

problem with M = 3 and N : I0. We take
r.. . .

¯ -8 1 0~.I

Ak : Ii -81-8.] ’
Bk = ck =

-I 1

1 -]

] 1

a

l

l

-l

for k = l, 2, ..., N. For the purposes of the illustration, an exact solution

vector xe is taken to be

xe : (l, 2, 3, ..., 30)T ,

and the right-hand side vector y is Txe. The following demonstration program

.generates the input to the package, calls the package, and prints the answers.

The vector y, which was computed independently, is dataZloaded in this program.

The output for this program (not shown here) shows a maximum error in the com-

ponents of x of less than lO~12 under either CHAT or PUTT.

’8-

C DEHONSTRATION PROGRAM FORBT PACKAGE’ . ,
C ’ "

C THIS PROGRAM GENERATES A 30BY 30 BLOCK-TRIDIAGONAL LINEAR SYSTEM,
C CONPUT.ES.LT.HE- =SOLUTION WIDTH DECBT/SOLBT, AND PRINTS ANSWERS ON

C LOGICAL URl/ :3. ’ AN EXACT’ SOLUTION .VECTOR’, IS; PRESET, AND THE
C CORRESPONDING RI)HT-H~,ND SliDE VECTOR, IS DATA-LOADED

DIMENSION A(3,3,1O),B(3v3, 10),C(3,3, lO),~E(30).Y(30).IP(30)
DATA Y /11,.1’.,-13.;-13.,-20,,-37.,-28.;,:-32,; -52.,-43.,

1 -44. , -87. ,:-58. ,-56. ;-82. , -73, , -68. , -97. , -88, ~-80. ,
2 -112.,"10G.,-92,,-127.,-llS,¯-104.j-142.,-142.,-125., -166./

10
C
C GENERATE MATRIX.

DO 30 K = 1,NDO 20 J = 1jM
DO 10 I,= 1,M

A(|,J,K) =
¯ BI~;I,J,KI’L==: 1,

10 C("I , J;K) 1.
A(J,J,K) = -8.
B(J,J,K) = "’1.

20 C(J,’J.K) = -1.
A(1,3,K) = O’.
A(3,1,,K) = O.

30 . CONTINUE
C
C GENER,~,TE EXACT SOLUTION VECTOR XE.

MN = M*N
DO 40 I = I,HN,

40 XE(I) FLOAT(
C
C CALL. DECB’I’.AND SOLBT AND WRITE ANSWERS.

WRI TE(3,ilOO)M.N
100 FOJ~HAT(3~7H DENON3TRATION PROGRAN FOR BT PACKAGE//"

1 4H M =, I4,6H N =, 1.4//)
CALL DECBT (M, N, A. B., Cj IP, IER)
IF (IER ,EQ. O) GO TO" 120

WRt FE(;3,110)IER
II0 FORHAT(/;/22H DECBT FAILED,.

GO TO 200
IER =,16//)

120 CALL .SOE, BT (M, N, A, B. C, Y, IP)
WRITE (3;~130)’(Y (I). I =

130 FORNAT(2’2tt COIfiPUTED SOLUTION =/(9E12 3))
ERH .= 0.
DO 140 I; = 1,MN XE

ERI = ABS(Y’(1) ~ (1))
140 ERM =* AMAXI(ERM,ERI)

WRITE(3,15O)ERM
150 FORMAT(/~IGH HAX:. ERROR IN Y =,E20.12)
200 CALL EXIT

END

-g-

Method

The basic method used to solve the system (I) and (2) is Gaussian elimin-

ation, formulated as a block-LU decomposition of T followed by back.substitu-

tions. For the decomposition, we write T in the factored form

T = LU =

°i Q
C2 D2

CN_l DN_l

BN DN

I.

©
(4)

where I represents the M x M identity matrix. The factor L is block-lower

triangular, and the factor U is unit-upper triangular (because of the unit

diagonal). While not guaranteed to exist in all cases, this decomposition

exists in most (if not all) cases of practical interest.

(4) can be computed, in succession, by the. relations

ii i.... D1 = AI, El = D IB , C~ = D ICI,

D2 A2 - C2E1 ,

Dk = Ak - CkEk_l

E2 : D~I(B2- C2C~) ,

Ek : O~IBk (k : 3, 4, ..., N-I),

The various blocks in

(5)

CI~= CN - BNEN.2, DN = AN - C~EN_1 ’.

These relations can be derived simply by comparing (4) with (2), block by block.

The sequence of operations in (5) is performed by DECBT, and the results are

written into the arrays A, B, andC, overwriting T. Wherever (5) calls for

D~I, the LU decomposition of Dk is computed by DEC (in the space originallymatrix

occupied by Ak), and multiplications by DkI are accomplished by calls to SOL.

Inverse matrices are not computed explicitly here. The other nonzero blocks in

-10-

(4) (excluding I) are written, as computed,;intothe locations occupied by
!

corresponding blocks..(in B and C) in (2).. .

The computation of.the LUdecomposition of,each Dk involves partial pivot-

ing, meaning that rows are interchanged .ina manner.Cdesigned to control the

growth of roundoff error. The interchanges.perfo:rmed are recorded in the IP

array.. However, these pivoting operations are done only withineach block of-

rows of.T-separately. For this reason, it is conceivable that the overall

algorithm (5) may suffer from numerical instability (i.e., harmful growth

:roundoff errors), if T is particularly unsuitable. That is, even though

may be nonsingula~, and the System (1) may be perfectly well-posed, it may

happen that in the allgor~thm (5), some k i s asi ~ngular or nearly, sin gular

matrix, and the subsequent computations may either be impossible or produce

highly inaccurate answers. If this happens in such a way that Dk is actually

found to be singular by DEC, the process is halted and DECBT returns IER =-k.

However, a.near-singularity in D k may go undetected. This warning is not neces-

sary, however, if T has appropriate properties (e.g., if T is diagonally domin-

ant). In-practical .applications, these properties tend to hold in the matrices

of interest. Thus, numerical instability is not likely to arise in practice.

Once the decomposition (4) is accomplished, the’ solution of the system (1)

is rather easily obta:ined. AS in (3), denote the blocks in x and y by i and

Yi’ respectively. We then proceed to Solve Lz = y-and Ux = z in succession, by

the operations

A matrix T = (tij) is cal-led diagonally dominant

strict .inequality for at least one value of i.

-II-

Zl = DII Yl

Zk =Dkl (Yk " Ck Zk-I)

zN D~l (~N _ C~ zN_1

(k : 2, 3, ..., N-l)

BN ZN_2)

(6)

x N zN

xk = zk - Ek Xk+1

xI = zI - El x2 C~ x3

(k : N-I, N-2, ..., 2) (7)

These operations are performed by SOLBT, which writes z in place of y and then

x in place-of z. The multiplication of a vector by DiI in (6) is done by SOL

with the existing LU decomposition of Dk.

-]2-

Avai I abi

PART II

M.IN~iMA~. STORAGE VERS.IONi~(~B~TMS)’

i ty
i

The BTMS package consists of subroutine BTMS, which is listed in

Appendix II for reference, and the auxiliary routines DEC and SOL [2]. At

LLL, the Fortran source,code for the package is available from the NMG

Mathematical Software Library [3], by way of the accessroutine MSLAR, using

the teletype command

NMG MSLAR READ BTMS END (return)

See [2] for instructions on obtaining the non-standard versions of DEC/SOL,

i’f desired. The routines contain.OPTIMIZEcards, which must be removed for

use under systems other tha:n CHAT or ORDER,

A demonstration, program is also available. It solves an example problem,

as described below. The source code for this program, together with the BTMS

package, is obtainable with the command

NMG MSLAR READ DEMO BTMS END Creturn)

usage

The BTMS package is used by making calls to subroutine BTMS and also

supplying.a subroutine called BLOX to communicate the elements of the matrix

T and the vector y. The ca}ling sequence for BTMS is as follows:

CALL BTMS.(M, NilE, A,B, C, IP, X, IER)

The definitions, of the arguments are as follows.

M =the order-(size, of each block in T.

-13-

E

A,B,C

IP

X

IER

= the number of blocks in each direction along the matrix T:, with N > 4.

The total order of T is M*N.

= .a working storage array of length.M*M*N.

= working storage arrays, each of lengthM*M.

= an integer array of length M for working storage (used for pivot infor-

mation). To save on storage, the IP array may occupy the same space

as part of the B array.

= an array containing, on output, thesolution vectorx, of length M*N.

= an output error indicator.

IER = 0 if no errors occurred;

= -l ifthe input value of M or N was illegal;.and

= K if a singular diagonal block was found in the Kth stage of

the decomposition.

If IER ~ O, a solution vector was not computed.

The user must provide a subroutine, BLOX, to supply T and y to BTMS. The

argument sequence of BLOX is as follows:

SUBROUTINE BLOX (M, K, A, B, C, YK)

The arguments M and K are input, M being as before, and K being an index,

1 < K < N. Subroutine BLOX is then to load into A, B, and C the M × M matrix

.blocks of the T matrix in the Kth block-row, namely AK, BK, and CK in the nota-

tion of (2).or (3), and load into the vector YK the block (of length M)

in the Kth block-row, namely YK in (3). A, B, and C must be given a first

dimension of M.

If it is more convenient, the vector y may be loaded into the X array prior to

the call to BTMS, rather than loaded by BLOX.

....
-14-

The-required storage for data arrays in BTMS is’M2N + MN + 3M2. This is

to be compared with the requi~rement of 3M2N + 2MN for BT.. For.large N, the

difference in storage costs may be .cons~iderabie, s%nce .the dominantterm in

the cost is one-third’as l’arge for BTMS.

If there is only. one linear system (I) that must be. solved (i.e., one vec-

tor y) for a given value.ofi:thematriix T., the computational cost of solving it

with BTMS is virtually the same as with BT. Hence, in that case, the storage

-ad.vantagelmay-weigh.-heavily in favor of BTMS. HoWever, if there is more than one

such~system for a given T, the computational cost of sol’ving them with BTMS can

be much. greater than~with BT. This. is because each such solution has the same

cost with BTMS, while with. BT solutions after the first one are much cheaper

than the first one. :Thus, there is a tradeoff Of ’rUn-time vs. storage which

must be carefully considered.

Example

We illustrate ¯the use:of GTMS with.the same small example problem (M = 3,

N¯= 10) given in Part I above. The following demonstration program calls BTMS

to solve the problem, andscontains Subroutine BLOX, to provide the input matrix

andvector.- The output (ndt shown here) shows a maximum error in the components

of x of less than. lO-!2, under either-CHAT or PUTT.

-15’

C DEMONSTRATION PF<OGRAM FOR BTHS PACKAGE.
C
C THI.S PROGRAN G[’t,~ERA’rES A 30 BY 30 BLOCK-TRIOIAGOi’tkL LINEAR SYSTEMj
C COPiF’U’rE:~; THE SOLUTION WITH [~,lNS, AND PRINTS ANSWERS ON
C LOG!CAL UNIT 3. THE EXACT SOLUTION VECTOR IS X(!) =
C AND THE CORRESPOE~DII’~G RIGHT-HAND SIDE VECTCR IS DATA-LOADED.
C

DINENSION E(90), A(9), B(9), C(9)j X(30),
COMMON /RHSVEC/ RHS(30)
DATA RHS /11,,1.,-13.,-13,,-20.,-37,,-28.,-32,;-52.,-43.~-

1 -44.,-67. ~-58.,-56.,-82.j-73.,-68.,-97.,-88.¯-80.,
2 -112. , -I03. j -92. , -127. , -118. j -104. , -142, , -142, , -125. "166./
M = 3
N = 10
HN = M~<N

C
C "’

WRI TE(3, 100)H,
100 FORMAT(39H DEPIONSTRATION PROGRAH FOR BTI’.IS PACKAGE//

4H H :, 14,6H N :, I411) :
C

CALL BTHS (M, N, E, A, Bj C, IP, X, IER)
C

IF (IER ,EQ, O) GO TO 120
C " "

WRITE(3j 110) IER
110 FORHAT(//22H DECBT FAILED,. IER :jIS//)

GO TO 200
C

120 WRITE(3,130) (~(I) , I =
1:30 FORHAT(22H COHPUTED SOLUTION X =/(9E12.3))

ERM = O.
DO 140 l = I~MN

ERI = ABS(X(1) FLOAT(1))
140 ERN = AHAXI(ERH, ER[)

NRITE(3,15O)ERM
150 FORHAT(//18H HAX. ERROR IN X =~E20.12)
200 CALL EXIT

END

10

20

SUBROUTINE BLOX (M. K~ A,B C. YK)
DIHENSION A(H.M). B(H.H), (H~N), YK(M)
COHHON /RHSVEC/ RHS(30)
DO 20 J = 1,M

DOIOI=I,M
A(I,J) =
B(IjJ) =1.
C(I,J) = 1.

A(J,J) -8.
B(J,3) -1.
C(J,J) -1.
CONTINUE

A(1,3) =
A(3j1
oao3)l=:°i

(K-l) +
YK(1) = RHS(J)

RETURN
END

Method.
i

-The method used by BT~S is exactly the same~as:in BT block-LU decom-

positionof T followed by back Substitution to sOlrve.for x. The difference is

in the order Of theoperati’ons performed and inlthe...interface with the user.

The decomposition operations (5) and .the forward i:Substitution operations (6)

are merge.d.together in Such a way that a minimum"of working space is needed.

The only blocks of the matr.ix that are saved in this sequence of operations

are the blocks .in the upper triangular factor. U, namelz,EI, ..., EN_I, and

C~. These are stored in the array E, with C~ occupying: the Nth block. Then

the backward substitution.operations (7) are performed to get x. As in BT,

multiplications by-DkI a.re accomplishedby:the LU method (with DEC/SOL), but

the LU.decomposit.ions Of-the Dk are saved-only as long kas they are needed in

the algorithm. - ~~..

The working-sto~age~ i.n BTNS-is arranged in such a way that the B array is

used only inthe¯process~ing of the last !block-row in (3). As a result, if storage

is critical and BN = O,~it..i~ easy to modify the package so that the B array is

not required at all.. Howevler., ilf the IP array overlaps: B in the user’s call to

.the unmodified package, ~hen a. separate IP array must be supplied to the modified
. . . .,

version.. The savings in; Sto:rage is then M2 M.

¯ " . ¯ .

-17-

TESTING

Both the BT and;BTMS packages~were Subjected to several series of tests.

Test problems were generated by choosing random elements for T and x in the

interval (-I,I), except for the diagonal elements of T, which were made large

enough to insure diagonal dominance. Then right-hand side vectors y were set

to Tx, and the solution vector computed by the package was compared to the Pre-

set x. Runs were made With 1 < M < 9 and 4 < N < 50. In all cases, the errors

were at the level of machine roundoff (less than 10-13). Additional tests were

made to check the tests for illegal input and for a singular matrix, and to

validate the packages on PUTT as well as CHAT. The use of the Compass version

of DEC/SOL reduced run times by factors of, typically, about 1.5.

As a sample of the run times, a test problem with M = 6 and N = 50 required

about 68 millisec for either of the two packages, with the Fortran version of

DEC/SOL, and about 45 millisec with the Compass version. With BTMS and the

Fortran DEC/SOL, the run time was 96 ms with the OPTIMIZE card removed from

BTMS. The run times for DECBT/SOLBT are about 3% lower than for BTMS (all else

being equal); because of the overhead of the calls to BLOX in the latter.

Details of these tests are on file with the Numerical Mathematics Group’s

Test Files.

-18-

R E F E:R E N C E.S

[1] I. Lindemuth and J. Killeen, Alternating Direction Implicit .Techniques-

for Two Dimensional Magnetohyd:rodynamic. Cal!Culations, J.Comp. Phys., 13

(!973), pp. 181-208.

[2] A,C,. Hi.ndmarsh., L.J. S]oan, K.W. Fong, and G,H. Rodr;igue, DEC/SOL: Solu-

tion of Dense Systems of Linear Algebraic Equations, LL[Report UCID-30137

c 9 6).
[3] F.. N. Fritschand A. W. ,Hall, Numerical Mathematics GroupMathematical

Software Library Catalog:, LEL Report UC.ID-30136 (1976).

-19-

APPENDIX I

LISTING OF DECBT / SOLBT

-20L

SUBROUTINE DECBT (M. N, A, B, C, IP, I:ER)
DIMENSION A(M,M,N), B(M,M,N., C(M,M,N), I~P(M,N)

C THE FOLLOWING C;~RD IS FOR, OPTIMIZED COMPILATION UNDER CHAT
OPTIMIZE

C ~-- L
C BLOCK-TRIDIAGONAL MATRIX DECOMPOSITION ROUTINE. -C WRITTEN BY,A~J C. HINDMARSH,
C THE INPUT HATRIX, CONTAINS THREE BLOCKS OF ELEMENTS IN EACH BLOCK’ROWj
C INCLUDING BLOCKS IN THE (1,3) AND (N.’N-2) BLOCK POSITIONS.
C DECBT USES BLOCK:GAUSS ELIMINATION AND SUBROUTINES DEC AND SOL
C FOR SOLUTION fOF BLOCKS. PARTIAL PIVOTING IS’DONE WITHINC BLOCK-ROWS ONLY,
C INPUT..
C M = ORDER OF EACH BLOCK.
C N = NUMBER OF BLOCKS IN EACH DIRECTION OF THE MATRIX.
C N MUST BE 4 OR MORE, THE COMPLETE MATRIX HAS ORDER M~N.
C A = M BY :M BY N ARRAY CONTAINING DIAGONAL. BLOCKS.
C ~(I,J,K) CONTAINS THE (I;J) ELEMENT OF THE K-TH BLOCK
C B = BY M BY N ARRAY CONTAINING THE SUPER-DIAGONAL BLOCKS
C (IN B(I~ FOR K = 1 N-l) AND THE BLOCK IN THE (N,N-2)C BLOCK ~ TION (IN B(,,N)).
C C = M BY M BY N: ARRAY CONTAINING THE SUBDIAGONAL BLOCKS
C (IN C(.,K)FOR K = 2,3,...,N) AND THE BLOCK IN THE
C (1~3) BLOCK POSITION (IN C(,,~)).
C IP = INTEGER ARRAY OF LENGTH M~N:~OR WORKING STORAGE.
C OUTPUT,.
C A,B,C = M BY Pi BY N ARRAYS CONTAINING THE BLOCK LU DECOHPOSITION
C OF THE INPUT HATRIX.
C IP = M BY,N ARRAY OF PIVOT INFORMATION. IP(,K) CONTAINS
C INFORMATIONFOR THE K~TH DIGONAL BLOCK.
C IER = 0 IF NO TROUBLE OCCURRED. OR1C = -1~ IF THE INPUT VALUE OF M;ORIN WAS ILLEGAL. OR
C = K IF A SINuULAR MATRIX WAS !FOUND IN THE K-TH DIAGONAL BLOCK.
C USE SOL.ST TO SOLVE, THE ASSOCIATED LINEAR SYSTEM.
C DECBT CALLS SUBROUTINES DEC(H.MO,A. IP, IER) AND SOL(MjMO~A,Y, IP)C FOR SOLUTION OF M BY ~M LINEAR SYSTEMS, :

IF (H .LT, 1 ,OR,, N .LT, 4) GO TO 210
NM1 = N - 1
Mr12 = N - 2

C PROCESS THE FIRST, BLOCK-ROW. - ...
CALL DEC (M, M~r~A, Ip, IER)
K=I
IF (IER .ME, O).GO TO 200
DO 10 J = 1 BM

CALL SOL IN, M, B(.I,J,CALL SOL (., .., I: , IP)10 CONTINUE
C ADJUST B(j,2)’.Do 40 J = ..

DO 30 I = 1,M
DP = O.
DO 20 L = 1,M

20 DP = DP + C(.I,L,2)~C(L,J,1)
30 B(I~J~2) = B(I,J,~)
40 CONTINUE

-21-

PRocEss BLOCK-ROWS 2 TO N-l. -CHAIN LOOP,
DO 100 K = 2,NM1

KM1 = K- 1
DO 70 J = 1,H

DO 60 I =1, M
DP = 0
DO 50 L = 1,M

50 DP = DP + C(I,L,K)~B(L,J, KM1)
60 A(I.J.K) = A(I.J,K) DP
70 CONTINUE

CALL DEC (M, M A(1,1,K), IP(’I,K),
IF (IER .NE.v~ 00 TO 200
DO 80 J = 1.M

80 CALL SOL{M, M, A(1,1,K), B(I=J,K)= IP(1,K))
100 CONTINUE

C PROCESS LAST BLOCK-ROW AND RETURN. -
130 J

DP = O,
DO 110 L = 1.M

110 DP =-DP + B(I,L,N)~B(L,J,NM2)
120 C(I.J.N) = C(I,J,N)

CONTINUE130 DO 160 J= l~M

DO 150 / = 1,M
DP = O.
DO 140 L = 1.M

140 DP = DP + C([,L,N)~B(L,J,NM1)
150 A(I.J.N) = A(I,J,N)
160 CONTINUE

CALL DEC (M, Mj ACI,I,N), 1P(1,N),
~ o, 00 TO 200

RETURN
C ERROR RETURNS. -

200 IER = K
RETURN

210 IER= "!
RETURN

C - END OF SUBROUTINE DECBT
END

-22-

SUBROUTINE SOLBT (M, N, A, B, Cj. Y, IP)
C ..
O THE FOLLOWING CARD IS FOR OPTIMIZED COMPILATION UNDER OHAT.

OPTIMIZE

C SOLUTION OF BLOCK-TRtDIAGONAL LINEAR SYSTEM.
C COEFF]CIENT MATRI:X MUST HAVE BEEN PREVIOUSLY PROCESSED BY .DECBT.
C INPUT..
C M = ORDER OF EACH BLOCK.
C- N = NUHBER OF BLOCKS IN EACH DIRECTION oF MATRIX,
C A,B,C = M BY M BY N ARRAYS CONTAINING BLOCK LU DECOHPOSITION
C OF COEFFI;CIENT HA’TRIX FROB DECBT.-
C IP = M BY N IHTEGER ARRAY OF P:IVOT INFORMATION FROM DECBT.
C Y = ARRAY OF LENGTH M~N CONTAING THE RIGHT-HANDSIDE VECTOR
C (TREATED AS AN M BY N ARRAY. HERE).
C OUTPUT..
C Y = SOLUTION VECTOR. OF LENGTH HeN.
C SOLBT MAKEST:CALLS TO SUBROUT~INE SOL(Mj.MO,A,y, IP)
C FOR SOLUTION’OF M:BY M LINEAR SYSTEMS

D]MENSION~A(M,M,N), B(M,M,N), C(M~M~N), Y(M,N~,
C

NM1 N -’ ~
NM2 ~ N -:

C FORWARDSOLUTION SWEEP. - ..
CALL" 80L (M’NM;2, M1 A, Y, IP)
DO 30 K =

KM1 = K 1
DO 20 I = 1 ~ M

DP = O.
DO 10 J = l’M

10 ¯ DP = DP,+ C(I,J,K)~Y(J~KM1)
20 Y(/,K) = Y(I,K)

CALL SOL (Hi M, A(1,1,K), Y(1,K), IP(1;K})
3O CONTINUE

DO 50 ! = 1,H
DP u O.
DO 40 J = I~,M

40 DP = DP +:C(ljJ,N)~Y(J,NH1) + B(~,J,N)*Y(J,NM2)
50 Y(I,N) = Y(’I,N) ~ .

CALL SOL (M M A’(1,1,N), Y(I,N), IP(1,N))
C BACKWARD SOLUTI~N~WEEP. - :

DO BO KB = 1,NM1

KPI = : 1
DO 70 I: = 1,M

DP = O.
DO 60 J = i, M

60 DP = DP + B(I,J,K)~Y(J,KP1)
70 Y(I,K) = Y(I,K)
80. CONTINUE "

DO 100 I~ =],M
Dp = 0."
DO 90 J. = l’,M

90 DP = DP * C(’I,J 1)*Y(J
100 ’Y(I..1) - Y.(~I,1) ’

RETURN
END OF SUBROUTINE SOLBT

END "

-23-

APPENDIX

LISTING OF BTMS

I I

-24-

ii i!̄,
/

-25-

C PLAIN LOOP, READ AND PROCESS BLOCK-ROWS 3 TO N-l. -
DO 150 K = 3,NH1

KM1 = K - 1
CALL BLOX (M,-K, A, E(1,1,K), C, X(1,K))
DO 100 J = 1 ¯H

DO 90 I = 1,H
DP = O.
DO 80 L = 1, M

80 DP = DP + C(I,L)*E(L,J,KH1)
90 A(I¯J) = A(I,J) DP
1 O0 CONT I NUE

DO 120 I = 1,H
DP = O.
DO 110 L = 1/H *V(L,KH1)

110 ¯ DP = DP +,...I,L)
120 X(I,K) = X(I,K)

CALL DEC (H, IP, IER)
1F (IER .WE, ~) ~6 300TO
DO 130 J = 1.H

130 CALL SOL (H - , E(1,J,K),
CALL SOL (M, I~I,HA,Ax(1,K),

150 CONT I NUE
C READ AND PROCESS THE LA.ST BLOCK-ROW. -

K = N

DOCALL180BLOXj =(M’,IHN’I= A, B, C, X(I,N))DO 170 1 ,M

DODI~6 I~, (P’I] , L) =E (L, j, NH2)160 P
170 C(I,J) ,J) - DP
1 80 CONTINUE

DO 210 J = 1,H
DO 200 I = ljH

Dp = O.

OOo~9__O L = t~H190 OP +], L)*E(L, J, NHI)
200 A(! J) = A(I,J) DP
210 CONTI ~UE

DO 2:30 I = 1AH
DP = O.
DOD220p = L = 1,H220 DP + C(I,L)~X(L, NH1) + B(IjL)=<X(L,

230 X(I N) = X(I,N) CALL DEC (Hj M= A. IP I IER)
IF (IER .NE, O) GO TO 300
CALL SOL (H, H, A, X(1,N), IP)

C BACKWARD SOLUTION SWEEP. - -;
DO 260 KB = 1,NM2

K = N - KB
KP1
DO 250 KI = 1,M

= + !
DP = O.

2,40 ~(HI, L, K) =X(L, KP1
250 X(I,K) = ,K) -
260 CONTINUE

C INCLUDE EXTRA TERMS IN LAST BACKWARDS’rEP. -
DO 280 I = 1,M

DP = O.
DOD270p L = 1,H270 = DP + E(I,L, 1)~X(L,2) + E(I,L~N)~X(L,3)

280 X(l,1) = X(I,1)-
RETURN

C ERROR RETURNS, -
300 I ER = K

RETURN
:310 I ER = - 1

RETURN
....... END OF SUBROUTINE BTHS

END

-26-

, NOTICE

This report was prepared m an account of work
~sponsored by the United States Government. Neither the
United Staies~ ~nor the United Stat~s Energy Research
& Development Administration, not any, of their
iemployees,’nor any Of their contractors, subcontractors,
~or their employees, makes any warranty, express or
implied, or assumes any legal liahiliW or respons~ility
!for the accuracy, completeness or: iusefulness of any
iinformation;- apparatus, product or. process disclosed, or"
,jepresents tl3at its use .would not infringe
:privately-owned" rights.

NOTICE

Reference to a company or product name does not
imply approval or reco~mendatioff of the product, by
the University of California or the U.S. Energy Research
& Development Administration to the;exclusion of
others, that may be suitable.

Page i Range

001-025
026-050
051-075
076~- 100
101-125
126~150
1517-175
i76~200
2o1~225
226~250
"251-275
276-300
301-325

Printed in the United States. of America
Available from

National Technical :Information.Service
U.S. Department of Commerce ..
5285 Port Royal Road
Springfield; VA 22161
:Price: Printed Copy $

Domestic
Price

$13.50
4.00
4.50
5.00

": : 5.50
- 6.00

6.75
7.50

! 7.75
8.00
9.00
9.25
9.75

; Microfiche $3.00

Page Range

326-350
351-375
376-400
401-425
426-450
451-475
476-500
51~ 1-525
526-550
551:-575
576-600
601-Up

Domestic
Price

10.00
10.50
10.7.5
1].00
I 1.75
12.00
12.50
12.75
13.00
13.50
13.75

’~Add $2.50 for each additional 100 page increment’from 601 ,to 1,000 pages;
add $4.50 for each additional tO0 page increment over i,O00 pages.

-<

